Roll No. Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(CE) (2011 Onwards) (Sem.-6)
NUMERICAL METHODS IN CIVIL ENGINEERING

Subject Code: BTCE-604 Paper ID: [A2291]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Q1) Write briefly:

- a) Define transcendental equation.
- b) Write normal equations for fitting straight line.
- c) Give any two differences between Galerkins method and Collocation method.
- d) Write formula of Modified Euler's method for the solution of ordinary differential equation.
- e) Give SOR method for the solution of partial differential equation.
- f) Find the Eigen values of the following matrix.

$$\begin{bmatrix} 2 & 6 & 6 \\ 2 & 8 & 6 \\ 2 & 6 & 8 \end{bmatrix}$$

- g) Write relation between forward operator and shift operator.
- h) Write Newton-Raphson formula for the solution of Non-linear equations.
- i) Define Interpolation & Extrapolation.
- j) Write three different techniques for the solution of Boundary value problem.

SECTION-B

- Q2) Using Newton's iterative method, find the real root of $x\log_{10}x = 1.2$. Correct to five decimal places.
- Q3) Given $\log x$ for x = 40, 45, 50, 55, 60 and 65 according to the following table :

x: 40 45 50 55 60 65 70 Log *x*: 1.60206 1.65321 1.69897 1.74036 1.77815 1.81291

Find the value of log 5875.

- Q4) Use Runga-kutta fourth order method to find the value of y when x = 1 given that y = 1 when x = 0 (taking n = 2) and $\frac{dy}{dx} = \frac{y x}{v + x}$.
- Q5) Explain New marks method for the solution for nonlinear problems.
- Q6) Given the following experimental values:

X: 0 1 2 3 Y: 2 4 10 15

Fit by the method of least squares a parabola of the type $y = a + bx^2$.

SECTION-C

- Q7) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length = 1.
- Q8) Solve the boundary value problem defined by y''-x=0 and y(0)=0, y(1)=-1/2 by Galerkin's method.
- Q9) Solve the following linear equations:

$$2x + 8y + 2z = 14$$

$$6x + 6y - z = 13$$

$$2x - y + 2z = 5$$